Phosphorylation of CREB Ser142 Regulates Light-Induced Phase Shifts of the Circadian Clock

نویسندگان

  • Daniel Gau
  • Thomas Lemberger
  • Charlotte von Gall
  • Oliver Kretz
  • Nguyet Le Minh
  • Peter Gass
  • Wolfgang Schmid
  • Ueli Schibler
  • Horst W. Korf
  • Günther Schütz
چکیده

Biological rhythms are driven in mammals by a central circadian clock located in the suprachiasmatic nucleus (SCN). Light-induced phase shifting of this clock is correlated with phosphorylation of CREB at Ser133 in the SCN. Here, we characterize phosphorylation of CREB at Ser142 and describe its contribution to the entrainment of the clock. In the SCN, light and glutamate strongly induce CREB Ser142 phosphorylation. To determine the physiological relevance of phosphorylation at Ser142, we generated a mouse mutant, CREB(S142A), lacking this phosphorylation site. Light-induced phase shifts of locomotion and expression of c-Fos and mPer1 in the SCN are significantly attenuated in CREB(S142A) mutants. Our findings provide genetic evidence that CREB Ser142 phosphorylation is involved in the entrainment of the mammalian clock and reveal a novel phosphorylation-dependent regulation of CREB activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The CRTC1-SIK1 Pathway Regulates Entrainment of the Circadian Clock

Retinal photoreceptors entrain the circadian system to the solar day. This photic resetting involves cAMP response element binding protein (CREB)-mediated upregulation of Per genes within individual cells of the suprachiasmatic nuclei (SCN). Our detailed understanding of this pathway is poor, and it remains unclear why entrainment to a new time zone takes several days. By analyzing the light-re...

متن کامل

Ca2+/cAMP response element-binding protein (CREB)-dependent activation of Per1 is required for light-induced signaling in the suprachiasmatic nucleus circadian clock.

Light is a prominent stimulus that synchronizes endogenous circadian rhythmicity to environmental light/dark cycles. Nocturnal light elevates mRNA of the Period1 (Per1) gene and induces long term state changes, expressed as phase shifts of circadian rhythms. The cellular mechanism for Per1 elevation and light-induced phase advance in the suprachiasmatic nucleus (SCN), a process initiated primar...

متن کامل

CREB in the mouse SCN: a molecular interface coding the phase-adjusting stimuli light, glutamate, PACAP, and melatonin for clockwork access.

The suprachiasmatic nucleus (SCN) is a central pacemaker in mammals, driving many endogenous circadian rhythms. An important pacemaker target is the regulation of a hormonal message for darkness, the circadian rhythm in melatonin synthesis. The endogenous clock within the SCN is synchronized to environmental light/dark cycles by photic information conveyed via the retinohypothalamic tract (RHT)...

متن کامل

JNK regulates the photic response of the mammalian circadian clock.

The posttranslational regulation of mammalian clock proteins has been assigned a time-keeping function, but seems to have more essential roles. Here we show that c-Jun N-terminal kinase (JNK), identified by inhibitor screening of BMAL1 phosphorylation at Ser 520/Thr 527/Ser 592, confers dynamic regulation on the clock. Knockdown of JNK1 and JNK2 abrogates BMAL1 phosphorylation and lengthens cir...

متن کامل

Reciprocity between phase shifts and amplitude changes in the mammalian circadian clock.

Circadian rhythms help organisms adapt to predictable daily changes in their environment. Light resets the phase of the underlying oscillator to maintain the organism in sync with its surroundings. Light also affects the amplitude of overt rhythms. At a critical phase during the night, when phase shifts are maximal, light can reduce rhythm amplitude to nearly zero, whereas in the subjective day...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2002